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Project Overview

* Performance of building energy models could be improved.

e Currently building energy models are created using
assumptions of HVAC equipment and building material
parameters and generic occupancy and load patterns.

* Tuning models, especially those that are highly resolved, can
be extremely time-consuming.

* Building energy model capabilities, availability of actual
building energy end-use data, and computing power are
increasing.

 Above led us to think why not use actual building data and
innovative optimization methods to improve the performance
of building energy models.
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Project Goals

* Make it feasible for researchers to investigate the
reasons design models, in some cases, fail to make good

predictions to:
— Improve modeling software;
— Learn which parameters are most important.

* Make it feasible to routinely make reasonably accurate
models of existing buildings to:
— Predict energy savings from retrofits or changes in
operation;
— Enable “model-based controls and optimization”;
— Enable automated fault detection and diagnosis.
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UC Merced Building Classroom and Office Building

10/12/10

92,000 ft2 ( 8500 m?)

* 30 classrooms, 100 offices,
auditorium, open office area
* Sub-meters for lighting, plug-
loads, HVAC fans, CHW, HW

* High-quality historical data
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EnergyPlus Model of COB

* Chose Energy Plus because it is the state of the art building
energy simulation tool with widest range of capabilities.

* Model was also used for study of occupancy based controls,
which required high spatial resolution (86 conditioned zones).

— Building surfaces (771); Day Schedules (1094)

 Optimization project has spanned 3 versions of EnergyPlus.

— Dual fan dual duct; model has a single cooling fan and actual
building has two cooling fans

— Relief fan control implemented with EMS script
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General Optimization Approach

* Select model outputs to use in a performance metric.
— Depends largely on available building data
— Can depend on model’s purpose (energy, comfort, etc.)

* Performance metric is basically the sum of the differences
between predictions and measurements.

* Select model parameters that will be adjusted and the ranges
over which the parameter values can vary.

 Run multiple models in parameter “space” to find model with
best performance metric score.
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Model Optimization

Model with initial parameters
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Automated Optimization for a 2-Week Period

Model with initial parameters Optimized model fits better
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Automated Optimization for a 2-Month Period

Cooling Energy
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Automated Optimization for a 2-Month Period
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Optimizing an Energy Plus Model

* Framework for optimization
* Parameterization Strategies
* Optimization Algorithms

10/12/10 Lawrence Berkeley National Laboratory 12



Optimizing an Energy Plus Model - Problem

We start with an Energy Plus model and data
from the real building.

Someone says “Optimize it”.

What happens next?
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Optimization Framework — Define an Objective

Function

We can numerically minimize functions

Make a function that takes model parameters and returns a
measure of the error in the corresponding model.

Minimize that function.
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Defining our Objective Function

Sensor data

- cooling and heating power
- circuit power

- zone temperatures

- fan power

Compare real data to predicted using RMS error
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Other software requirements

We need to be able to handle “real-world” sensor data.
- Missing sensor data

- Sensor data coming in at unusual/misaligned intervals
- Sensor data not in the form we need it to be

- Same for model output

STEM (Software for Tuning Energy Models) does this
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Our Objective Function

RMS cooling power error
+

RMS heating power error,

+

RMS circuit power errors (4 of them),

+

RMS fan power errors

+

81 temperature RMS errors (all converted to “equivalent”
energy units).
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Parametrizing a Building Model

Oftentimes, the parameters we wish to optimize are not

found directly in the model I
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Parametrizing our Model

Two classes of optimization
1) 12 parameters
2) 56 parameters,

Half are “indirect” parameters.
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Other Preprocessing

We can add observed data into the model
- Circuit power using plug load schedules
- Temperatures using setpoint schedules

We can use other software tools to help set up

parameterizations.
- Clustering zones by estimated temperature setpoints
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Optimization Methods

Hooke-Jeeves
- “Intelligent” optimization.
- Implemented via GenOpt

- Suitable for single-processor machines.
- 1 week on a desktop machine.

Particle Swarm Optimization

- Imagine a school of fish looking for “hot-spots”.
- Suitable for running on a cluster or the cloud.
- < 24 hours on NERSC computers; < 4 for small problems

Many others available
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Model “Opt7” has RMS error of 73 kW in cooling

power; only 8% lower error than Base Model
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But classroom temperatures are better in Opt7 than

in Base (RMS error is reduced 40%)
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We assume there is an underlying “occupancy schedule” that

determines plug load and lighting schedules
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Opt7 has lots of parameters, and could use more!

Opt7 optimizes about 60 parameters

6 parameters describe classroom weekday occupancy schedules; all classrooms are
assumed the same, and every weekday is assumed the same.

6 describe classroom weekday schedules
6 describe office weekday schedules
6 describe office weekend schedules

Other parameters include air infiltration into perimeter zones (night and day); base
and maximum plug loads; and many more.

We can optimize this for a three-month simulation in a few hours.
Thanks, NERSC! Thanks, Noel Keen!
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Some Opt7 parameters are tightly constrained,;

others aren’t.

Classroom_Weekday_T4 _
Classroom_Weekday_T1 _|
OfficeCoolingSetpoint_Weekend _|
ClassroomCoolingSetpoint_Weekend _]
OfficePopulationMaxLevelWeekdayFrac _|
OfficePopulationBaseLevelWeekday _|
ClassroomPopulationMaxLevelWeekdayFrac _j
ClassroomPopulationBaseLevelWeekday _|
DefaultNightInflACH _|

DefaultDayInfilACH _|

FirstFloorHallwayExchangesPerHour _|

Score _|

“Parallel coordinates” plot is a good way to display many parameters. “Vislt” is a
nice platform for this. (Thanks Prabhat of Computational Research Div.)
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Similar scores, different parameter values

Classroom_Weekday_T4 _

Classroom_Weekday_T1 _|
OfficeCoolingSetpoint_Weekend _|
ClassroomCoolingSetpoint_Weekend _]
OfficePopulationMaxLevelWeekdayFrac _|
OfficePopulationBaseLevelWeekday _|
ClassroomPopulationMaxLevelWeekdayFrac _j

ClassroomPopulationBaseLevelWeekday _|

DefaultNightInflACH _|
DefaultDayInfilACH _|

FirstFloorHallwayExchangesPerHour _|

Score _|
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We can also impose temperatures with schedules for

every day, for every zone, using HVAC schedules
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A model can fit well with bad parameter values

PeopleConversion_M _

PeopleConversion_B _|

SupplyFanEfficiency _|

DefaultNightInfilACH _j

DefaultDayInfilACH _|

FirstFloorHallwayExchangesPerHour _|

Score _|

Opt3 has essentially no temperature error. The cooling error is about the same as Opt7
and is slightly better than the base model. Overall the fit is much better than the base
model. But these fan efficiency and hallway infiltration values can’t be right.
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Should energy models be automatically adjusted

to fit data?

Just because you can do it doesn’t mean it’s a good idea.

Everybody who builds an energy model of a real building adjusts it to fit data. Software will
do this much faster than hand-tuning. Good!

Automated fitting ensures that you can find the best fit. Good!

If even the best fit isn’t good, you’ve learned something important. Good!

Optimized parameters can give you clues about ways in which your model is structurally
deficient; for instance, if some parameters “want” unreasonable values, they’re telling

you something. Good!

Particle swarm (or other approaches not yet implemented) can help evaluate sensitivity:
can tell which parameters, if any, can be pinned down by the data Good!
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Should energy models be automatically adjusted

to fit data?

There is a tendency to keep blindly fitting slightly altered models in the hope of
striking gold. Bad!

There is a tendency to think that if the model fits well, its parameters must
describe the real building. VERY bad (if you succumb to this tendency)!

CONCLUSIONS

Adjust your model to fit data
Use our STEM software to do it (you will need our help)

Look at the model parameters: do they make sense? Are they telling you
something?

Adjust the model if necessary, then re-fit

Don’t focus just on the fit metric: the model that fits best is not the best
model!
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